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Abstract
Discriminative correlation filters (DCF) have achieved enormous popularity in the tracking community. Recently, the per-
formance advancement in DCF-based trackers is predominantly driven by the use of convolutional features. In pursuit of
extreme tracking performance, state-of-the-art trackers (e.g., cascade correlation tracking [1] and HCF [2]) equip DCF with
hierarchical convolutional features to capture both semantics and spatial details of the target appearance. While such methods
have been shown to work well, multiple feature integration results in high model complexity which significantly increases
the over-fitting risk and computational burden. In this paper, we present a coarse-to-fine framework for cascade correlation
tracking (CCT). Instead of integrating hierarchical features, this framework decomposes a complicated tracker into two low-
complexity modules, a coarse tracker C and a refined tracker R, working in a coarse-to-fine manner. The coarse tracker C
employs low-resolution semantic convolutional features extracted from a large search area to cope with large target displace-
ment and appearance change between adjacent frames. By contrast, the refined trackerR employs high-resolution handcraft
features extracted from a small search area to further refine the coarse location of C. Our CCT tracker enjoys the strong
discriminative power of C and the high efficiency ofR. Experiments on the OTB2013 and TC128 benchmarks show that CCT
performs favorably against state-of-the-art trackers.
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1 Introduction

Visual tracking is a classical and rapidly evolving research
topic in computer vision with a variety of applications
such as video surveillance [3], augmented reality [4] and
human–computer interaction [5]. It is the task of continu-
ously locating a target given only its initial state (generally
an axis-aligned rectangle) in a video sequence. Recently,
discriminative correlation filters (DCF)-based trackers have
achieved enormous popularity in the tracking commu-
nity. With the circular assumption, standard DCF achieves
extremely high tracking frame rates with a closed-form
element-wise solution. Different variants of closed-form
DCF have been proposed to boost tracking performance
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using multi-dimensional features [6], robust scale estimation
[7], nonlinear kernels [8], long-term memory components
[9], target response adaptation [10], complementary cues [11]
and context learning [12].

To achieve further performance improvement, an emerg-
ing trend is to use deep features for their strong discriminative
power. Danelljan et al. [13] first introduce shallow convo-
lutional features into the DCF-based tracking framework.
Shallow convolutional features capture high-resolution spa-
tial details for precise localization, but are not robust to target
appearance variation. Later, Ma et al. [2] exploit the seman-
tic information of last layers to handle large appearance
changes and alleviate drifting by using features of earlier
layers for precise localization. CCOT [1] employs the inte-
gration ofmulti-resolution features in the continuous domain
and achieves the top rank on the VOT2016 challenge [14].
Compared with traditional closed-form DCF which employs
handcraft features and a restricted search area, both HCF [2]
and CCOT [1] maintain a larger filter size or filter dimension
due to the larger search area or multiple feature integration.
The large filter size and filter dimension lead to massive
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trainable parameters in the tracking model, which increases
the model complexity, over-fitting risk and computational
burden. For instance, CCOT runs with a frame rate of 0.2 fps,
which is insufficient for computationally constrained plat-
forms, such as aerial tracking using unmanned aerial vehicle
(UAV).

In this paper, instead of integrating hierarchical features,
we propose to reduce the model complexity by decompos-
ing a complicated tracker into low-complexity collaborative
modules. This idea is inspired by the following observations:

Observation 1. Closed-formDCFwith handcraft features are
suitable for accurate and efficient tracking, but suffers from
large target displacement between adjacent frames due to the
restricted search area originated from boundary effect.More-
over, handcraft features are not robust to target appearance
variation.

Observation 2. Semantic convolutional features extracted
from the last layers of a deep neural network is suitable for
robust coarse tracking, which can compensate closed-form
DCF for large target displacement. Meanwhile, complemen-
tary to handcraft features, semantic convolutional features
capture abstract semantics which cope well with large
appearance variation.

Observation 3. Closed-form DCF employs high-resolution
handcraft features, but can be efficiently trained with an
element-wise solution. Semantic convolutional features con-
tain limited values due to the small feature map size and put
little burden on model training.

Based on the above observations, we propose a coarse-to-
fine framework for cascade correlation tracking. Our CCT
consists of two components, a coarse tracker C and a refined
tracker R, working in a coarse-to-fine manner. The coarse
tracker C employs low-resolution semantic convolutional
features extracted from a large search area to cope with large
target displacement and appearance variation. On contrast,
the refined trackerR employs high-resolution handcraft fea-
tures extracted from a small search area to locate the target
accurately with a closed-form DCF solution.

Implementing a CCT algorithm needs three parts: a coarse
tracker C, a refined tracker R and a scale module S. For C,
we choose the CREST tracker [15] to track with semantic
convolutional features extracted from a large search area. For
R and S, we choose the discriminative scale space tracking
(DSST) algorithm [16] for efficient precise target localization
and scale estimation.

The proposed CCT algorithm is evaluated thoroughly on
two popular tracking benchmarks OTB2013 [17] and TC128
[18]. In these experiments, CCT achieves favorable tracking
performance against state-of-the-art trackers.

In summary, our firstmain contribution is the novel coarse-
to-fine tracking framework to decompose a complicated

tracker into basic collaborative modules. With this frame-
work,wemade a second contribution to implement a tracking
solution that combines closed-formDCF (DSST)with a deep
learning-based tracker (CREST). Then, our solution shows
very promising results on OTB2013 and TC128 in compar-
ison with state of the arts. Moreover, it is worth noting that
CCF is a very flexible framework and our implementation is
far from optimal. We believe there are great rooms for future
improvement and generation.

2 Related works

There are extensive surveys on visual tracking in the litera-
ture. We refer readers to [19] and [14] for a thorough review
of existing tracking algorithms. In this section, we only focus
on the most related work.

Closed-form correlation filters. Recently, discriminative
correlation filters (DCF) have drawn increasing attention in
visual tracking. Conventional correlation filters transform
spatial correlation into efficient element-wise multiplication
in the frequency domain and achieve extremely high compu-
tational efficiency with a closed-form solution. The pioneer
MOSSE tracker [20] attracted considerable attention with a
tracking speed of over 600 fps.Henriques et al. [21] introduce
kernel space into correlation filter and propose a circulant
structure with kernel (CSK) method for tracking. CSK is
then extended in [8] for further improvement and results in
the well-known kernelized correlation filters (KCF). Later,
discriminative scale space tracker (DSST) [7] is proposed by
Danelljan et al. to achieve real-time scale adaptive tracking.
Bertinetto et al. [11] combine a correlation filter and a global
color histogram to achieve robustness to both deformation
and color change. Recently, Valmadre et al. [22] interpret
closed-form DCF as a differential layer in a deep neural net-
work to learn end-to-end convolutional features.

Conceptual improvement in filter learning. Despite the
extreme efficiency, closed-form DCF significantly suffers
from boundary effects which lead to a restricted search
area. Several approaches have been proposed to address the
problem of boundary effects. SRDCF [23] learn a correla-
tion filter with large spatial support which leads to a larger
search area in the detection stage. Filter values outside the
object bounding box are penalized with higher regulariza-
tion weights to highlight the central area of the correlation
filter. Within the SRDCF framework, CCOT [1] employs
the integration of multi-resolution features in the continuous
domain and achieves the top rank on the VOT2016 chal-
lenge [14]. BACF [24] trains correlation filters from real
negative samples densely extracted from the background and
ensures a correct filter size. Further, Song et al. [15] reformu-
late the correlation filter as a convolutional kernel in a deep
neural network and propose convolutional residual learn-

123



Beyond feature integration: a coarse-to-fine framework for cascade correlation tracking

ing for visual tracking (CREST). Both CCOT and CREST
exploit the high-dimensional shallow convolutional features
and maintain massive trainable parameters in the tracking
model.

Cooperative mechanism in visual tracking. The idea of
decomposing a complicated tracker into basic cooperative
modules is not new in visual tracking. A pioneering example
is the TLD tracker [25] which consists of a tracker, a detec-
tor and a learner. The long-term correlation tracker (LCT)
[9] combines closed-form DCF with a re-detection module
to achieve robust long-term tracking. The parallel tracking
and verifying (PTAV) framework consists of a tracker and a
verifier,working in parallel on two separate threads to achieve
accurate and real-time tracking. The verifier in PTAV is never
updated and is activated only occasionally based on a fixed
threshold. This manually designed activation mechanism is
highly video dependent and suffers from poor generalization.

3 Building blocks

A typical coarse-to-fine tracking framework consists of
two basic components: a coarse tracker C and a refined
tracker R.

3.1 Refined trackerR

The refined trackerR is responsible for precise target local-
ization. We choose the discriminative scale space tracker
(DSST) to implement the refined tracker. The aim of DSST
is to learn a multi-dimensional M × N × d correlation filter
R from a d-dimensional M × N × d feature f . We denote
feature layer l ∈ {1, . . . , d} of f by f l . y is the designed out-
put for each location in the feature f , which is a predefined
sampled Gaussian with a standard deviation proportional to
the target size. The desired correlation filter R is obtained by
minimizing the following target function,

ε(R) =
∥
∥
∥
∥
∥

d
∑

l=1

f l ∗ Rl − y

∥
∥
∥
∥
∥

2

+ λ

d
∑

l=1

∥
∥
∥Rl

∥
∥
∥

2
. (1)

Here, * denotes the convolution operator and the regulariza-
tion scalar λ controls the impact of the regularization term.

Equation (1) can be transformed into the Fourier domain
as:

ε(R̂) =
∥
∥
∥
∥
∥

d
∑

l=1

f̂ l · R̂l − ŷ

∥
∥
∥
∥
∥

2

+ λ

d
∑

l=1

∥
∥
∥R̂l

∥
∥
∥

2
. (2)

Here, · denotes point-wise multiplication and the hat denotes
the DFT of a function.

According to [7], the solution to (2) is

R̂l = f̂ l
∗ · ŷl

∑d
l=1 f̂ l∗ · f̂ l + λ

. (3)

Here, f̂ l means the Fourier transform of f l and f̂ l
∗
means

the complex conjugation of f̂ l . The product and division in
(3) is point-wise.

Let f denote theM×N×d feature extracted in the current
frame and R denote the M × N × d correlation filter learned
in the previous frame. In the detection stage, the correlation
scores Sf at all locations in the image patch are computed as
follows,

Sf = F−1

{
d

∑

l=1

f̂ l · R̂l

}

. (4)

Here, F denotes the Fourier transform of a function and its
inverse denotes the inverse Fourier transform.

3.2 Coarse tracker C

We choose the CREST tracker [15] as the coarse tracker C in
CCT.Different fromDSSTwhich has a closed-form solution,
CREST reformulates the correlation filter as a convolutional
kernel in a one-layer deep neural network and performs sta-
tistical gradient to train the tracking model. Once we have
the convolutional kernel trained, target localization is simply
finding the maxima on the response map

yx = φ(x) ∗ C (5)

where C is the convolutional kernel, * is the convolution
operation and φ is a feature extractor, e.g., CNN. x is an
image patch centered on the target which is usually larger
than the target object to provide enough background context.

Different from (1), the objective of CREST is defined as
follows

ε(C) =
∑

(h,w)∈P

∥
∥
∥ey(h,w)[yx (h, w) − y(h, w)]

∥
∥
∥

2 + λ ‖C‖2 . (6)

where yx (h, w) represents the element of yx in (h, w) coor-
dinates and P = {(h, w)||yx (h, w) − y(h, w)| > 0.1} is a
set of coordinates where the difference of yx (h, w) and yx
is above a fixed threshold. ey(h,w) performs as active weight
for P in hard negative mining.

Besides reformulating the correlation filter as a convolu-
tional kernel, CREST also inserts spatial–temporal residual
modules to avoid target model degradation by large appear-
ance changes. CREST also devises sophisticated initializa-
tion, learning rates, and weight decay regularization.
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4 Our tracking framework

Our tracking pipeline includes four steps: coarse location,
refined location, scale estimation and model update. The
flowchart of our coarse-to-fine tracking pipeline is shown
in Fig. 1 and summarized in Algorithm 1. The details are
discussed below.

4.1 Coarse-grained location

For the coarse tracker C, we adopt imagenet-vgg-verydeep-
16 network [26] using the implementation in the MatCon-
vNet library [27] for feature extraction. The network is
trained on the ImageNet dataset for the image classification
task.

Given an input frame and the target location, we extract a
large search patch (five times the target size) centered on the
target object. This patch is fed into imagenet-vgg-verydeep-
16 for feature extraction. To produce semantic convolutional
features for the coarse tracker, we employ the activations pro-
duced after the relu4_3 layer. The semantic convolutional
feature map has small spatial size, but captures coarse-
grained semantics. To further reduce the model complexity
of C, the high-dimensional semantic convolutional features
are compressed with the PCA dimensionality reduction.

Different from closed-form correlation filters which suffer
from the restricted search region, our coarse tracker holds
a large search region due to the large input image patch.
The large search region enables the coarse tracker to cope
better with fast motion and heavy occlusion. Besides taking
advantage of the high-level semantics, the coarse tracker is
robust to significant target appearance variation originated

from self-deformation, illumination change and background
clutter.

4.2 Fine-grained location

Due to the spatial strides in the convolutional neural net-
works, the coarse tracker C can only locate the target coarsely
with a 8×8 cell size. Therefore, semantic convolutional fea-
tures are insufficient to capture fine-grained spatial details
which are effective for precise localization. This is attributed
to the decreased spatial resolution in the deeper layers.
Intuitively, better spatial resolution alleviates the task of
accurately locating the target,which is crucial for the tracking
problem.

The refined tracker R is responsible for precise target
localization. Compared with the coarse tracker C,R employs
handcraft features (e.g., HOG [28]) from a smaller target
search area (two times the target size) centered at the coarse
location of C. Due to the boundary effects, R is not able
to cope with large displacement of the target between the
previous frame and current frame. However, thanks to C,
most of the large displacement has been compensated by the
coarse-grained location. Therefore,R only need to perform a
second-round fine-grained location around the initial coarse-
grained location. In this work, R employs the HOG feature
with a 1× 1 cell size. In this way, with the fine-grained loca-
tion, the location accuracy is refined from 8 cell size to 1 cell
size.

4.3 Model update

In our tracking pipeline, it is computationally efficient to
extract the semantic convolutional features with the labor of
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Coarse response mapVGG network CREST
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Fig. 1 Flowchart of our coarse-to-fine tracking framework

123



Beyond feature integration: a coarse-to-fine framework for cascade correlation tracking

GPU. The coarse-grained location is also efficient with the
fast CNN forward propagation in the coarse tracker C. The
fine-grained location is beyond real time with the element-
wise solution of standard DCF. Therefore, the bottleneck for
real-time performance lies in model update of the tracking
pipeline.

With the closed-form solution, the refined trackerR can be
efficiently trained element by element in the Fourier domain.
On contrast, formulated as a convolutional kernel, the coarse
tracker C has to be updated with the exhaustive stochastic
gradient descent (SGD) method. Thanks to the semantics
captured in the semantic convolutional features, we do not
need to update C in each frame. Instead, we can set the updat-
ing frequency tomake agoodbalance between computational
efficiency and model adaptation.

4.4 Scale estimation

In the source codes provided in [15], scale variation is
estimated by processing the search image at three scales.
With no doubt, searching scale at multiple resolutions
significantly increases the computational cost. To achieve
fast scale adaptive tracking, our framework removes scale
estimation from CREST and follows the scale filter in
DSST and uses patch pyramid with the scale factors
{as |s = [− S−1

2 ], [− S−3
2 ], ..., [ S−3

2 ], [ S−1
2 ]}. Instead, the

coarse tracker C and the refined trackerR share the common
one-dimensional scale correlation filter after the coarse-to-
fine translation estimation process.

Algorithm 1 Coarse-to-fine Tracking
Input:

Target state Xt−1 = (xt−1, yt−1, st−1) in frame t − 1. (xt−1, yt−1)

is the target location while st−1 is the scale size.
Output:

Estimated target state Xt = (xt , yt , st ) in frame t .
Tracking:
1: Crop the large image patch centered at (xt−1, yt−1) and feed it into

the convolutional neural network to extract the semantic convolu-
tional features.

2: Feed semantic convolutional features into the coarse tracker C to
generate the coarse response map. Search for the coarse target loca-
tion (xct , y

c
t ) on the coarse-grained response map.

3: Crop a small image patch centered at (xct , y
c
t ) and extract handcraft

features.
4: Feed handcraft features into the refined tracker R to generate the

fine-grained response map. Search for the refined target location
(xt , yt ) on the fine-grained response map.

5: Estimate the new target scale st with the scale filter.
6: Crop a large image patch centered at (xt , yt ) and extract seman-

tic convolutional features for updating C with statistical gradient
descent.

7: Crop a large image patch centered at (xt , yt ) and extract handcraft
features for training R with the closed-form solution.

5 Experiments

Here, we present a comprehensive evaluation of the proposed
tracker (CCT). Results are reported on two popular tracking
benchmarks: OTB2013 [17] and TC128 [18].

5.1 Implementation details

For convenience reasons, we follow the default parame-
ter setting of CREST and DSST as reported in [15] and
[16], respectively. The CREST tracker employs the con-
volutional features extracted from the relu4_3 layer in the
imagenet-vgg-verydeep-16model for feature representation.
This model can be downloaded from http://www.vlfeat.org/
matconvnet/pretrained/. The target search area of CREST is
set to be square and five times the target size. On contrast,
DSST employs the 31-dimensional HOG features with 1×1
cell size. The target search area of DSST is set to be two
times proportional to the target size. CREST is updated every
two frames, while DSST is updated in each frame. Param-
eters are fixed for all videos in each dataset. Our tracker is
implemented in Matlab and uses Matconvnet [27] for deep
feature extraction. The comparison experiments of CCT are
performed on a 4-core Intel Core -7-6700 CPU at 3.4GHz
with a GeForce GTX TITAN GPU. The source codes for
our approach are available at https://github.com/moqimubai/
CCT.

5.2 Experiments on OTB2013

5.2.1 Overall performance

OTB2013 is a popular tracking benchmarkwhich contains 50
videos. We evaluate CCT on OTB2013 in comparison with
8 state-of-the-art trackers from three typical categories: (1)
correlation filter-based trackers, including CCOT [1], Deep-
SRDCF [13], SRDCF [23] and DSST [16]; (2) deep trackers,
including CRSET [15], Siamfc3s [29] and cfnet [22]; (3)
other trackers with collaborative modules, including Staple
[11] and PTAV [30].

Following the protocol in OTB2013, we report the results
in one-pass evaluation (OPE) using distance precision rate
(DPR) and overlap success rate (OSR) as shown in Fig. 2
and Table 1. Overall, CCT performs favorably against all
other state-of-the-art trackers in both rates. On OTB2013,
our tracker achieves an DPR of 90.9% and an OSR of
67.8%. Though CCOT utilizes multiple feature integration to
enhance feature representation, our approach performs better
compared with its DPR of 90.8% and OSR of 67.7%. Our
tracker performsbetter than both trackers,CRSETandDSST,
in both the precision rate and success rate. Moreover, with
our coarse-to-fine tracking framework, CCT (7 fps) achieves
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Fig. 2 Precision plots and success plots for all the trackers in compar-
ison with OTB2013

over threefold speedup against CREST (2 fps) and over 20-
fold speed up against CCOT (0.3 fps).

5.2.2 Attribute-based evaluation

We further analyze the performance of CCT under differ-
ent attributes in OTB2013. All the videos in OTB2013 are
annotated with 11 different attributes, namely illumination

variation, scale variation, occlusion, deformation, motion
blur, fast motion, in-plane rotation, out-of-plane rotation,
out of view, background clutter and low resolution. Figure 3
shows the comparison of CCTwith other tracking algorithms
on these eleven attributes. On all the eleven attributes, CCT
achieves competitive performances which demonstrates its
robustness in challenging tracking scenarios.

5.2.3 Qualitative evaluation

To intuitively demonstrate the superiority of CCT, we further
present some screenshots of the tracking results on bench-
mark sequences from OTB2013. Figure 4 shows screenshots
from 7 challenging videos in the OTB2013 dataset. Here, we
compareCCTagainst SRDCF [23],DSST [16] and cfnet [22]
with respect to five challenging attributes (e.g., fast motion,
deformation, partial occlusion, short-term full occlusion and
background clutter). The videos (from top to bottom) are
Skiing, Bolt, Jogging1, Lemming, Ironman and Soccer.

In theSkiing sequence, the target undergoes largedisplace-
ment between adjacent frames due to fast motion. DSST,
SRDCF and cfnet drift to the background in the beginning
of the sequence. On contrast, our CCT tracker persistently
tracks the target with the coarse tracker which holds a large
search area.

In the Bolt sequence, the target undergoes shape defor-
mation. DSST and SRDCF lose track of the target due to the
employedHOG featurewhich is sensitive to geometric defor-
mation.OurCCT tracks the targetwellwith the coarse tracker
which employs high-level convolutional features. These fea-
tures encode semantics and are robust to target deformation.

In the Jogging1 and Lemming sequences, the targets
undergo partial occlusion and short-term full occlusion,
respectively. Only the CCT tracker manages to track the tar-
get until the end of both sequences. It is worth noting that
DSST fails to track the target in both sequences, while our
CCT tracker manages to track the target from beginning to
end. This demonstrates the effectiveness of the coarse tracker
in re-detecting tracking failures and resuming tracking of the
target.

In the Ironman and Soccer sequences, our CCT tracker
demonstrates strong robustness against background clutters,

Table 1 Quantitative comparison of DPR, OSR and average frame rate (FPS) of all trackers with OTB2013

CCT CCOT CREST PTAV DeepSRDCF SRDCF cfnet siamfc3s Staple DSST

DPR (%) 90.9 90.8 90.8 87.9 84.9 83.8 80.7 80.9 78.2 74.0

OSR (%) 67.8 67.7 67.3 65.4 64.1 62.6 61.1 60.7 59.3 55.4

Avg. FPS 7 0.3 2 27 0.5 3.6 75 86 60 56

The best and second best values are highlighted in color
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Success plots of OPE - in-plane rotation (31)
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Success plots of OPE - illumination variation (23)
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Success plots of OPE - low resolution (4)
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Success plots of OPE - motion blur (12)
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Success plots of OPE - occlusion (27)
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Success plots of OPE - out-of-plane rotation (37)
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Success plots of OPE - out of view (6)
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Success plots of OPE - scale variation (28)
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Fig. 3 Success ratio plots on 11 attributes of the OTB2013 dataset. Trackers are ranked by their AUC scores

which can also be attributed to the semantic convolutional
features in the coarse tracker.

Overall, it is easy to see that CCT performs better than the
compared trackers in the presence of fast motion (Skiing),
deformation(Bolt) , partial occlusion (Jogging1), short-term
full occlusion (Lemming) and background clutter (Ironman
and Soccer). However, like most trackers, CCT tends to drift
to the background in the presence of long-term full occlusion
as shown in Fig. 5. In future work, we tend to solve this
problem by equipping CCT with a re-detection module to
achieve long-term tracking.

5.3 Experiment on TC128

Experimental results on the TC128 dataset containing 128
videos are shown in Fig. 6. Our CCT is compared with
all the default trackers in TC128. Among the 18 compared
trackers, our CCT obtains the best distance precision rate
(DPR) of 70.62% and the best overlap success rate (OSR)
of 52.24%. By comparison, CCT achieves significant perfor-
mance improvement, demonstrating the advantages of our
coarse-to-fine tracking framework.

5.4 Detailed analysis of CCT

Different coarse tracker C. As shown in Fig. 2, CREST
achieves a tracking speed of only 2 fps. Our CCT improves
the tracking frame rates to 7 fps, but is still far from real-time
tracking. We attribute the low computational efficiency of
CCT to the SGD training in CREST. Therefore, for compu-
tationally restricted applications, we can reduce the updating
frequency of CREST or replace CREST with Siamfc3s in C
to achieve real-time tracking.

Different refined tracker R. In the refined tracker R, DSST
can be replaced with its fast version, fDSST [7], to fur-
ther improve the tracking speed. Alternatively, DSST can
be replaced with Staple to further improve the localization
accuracy and robustness to target deformation.

Feature sharing. In our approach, the coarse tracker C
employs high-level semantic convolutional features extracted
from the deep layers of a convolutional neural network
for target representation. However, the ready-made shallow
convolutional features extracted from the earlier layers are
wasted. It is worth noting that the extraction of shallow
convolutional features also consumes a lot of computing
resources. In the future work, we will explore the potential
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Fig. 4 Tracking screenshots of CCT, DSST, SRDCF and cfnet. The videos (from top to bottom) are Skiing, Bolt, Jogging1, Lemming, Ironman and
Soccer from the OTB2013 dataset

Fig. 5 Tracking failure of our CCT tracker in the presence of long-term full occlusion
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Fig. 6 Precision plots and success plots for all the trackers in comparison with TC128

of replacing handcraft features with the ready-made shallow
convolutional features in the refined tracker R.

6 Conclusion

In this paper,we propose a newcoarse-to-fine tracking frame-
work for cascade correlation tracking (CCT), which decom-
poses visual tracking into two subtasks, coarse-grained
tracking and fine-grained tracking. We show that the coarse
tracker and refined tracker can cooperate in a coarse-to-fine
manner to achieve accurate and fast tracking. With these two
collaborative modules, CCT achieves encouraging results on
theOTB2013 and TC128 benchmarks whilemaintaining low
model complexity. Since CCT is a very flexible framework
with great rooms for improvement and generalization, we
expect this work to stimulate the designing of more efficient
tracking algorithms in the future.
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